Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 322: 116024, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055092

RESUMO

Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.


Assuntos
Liriodendron , Mudança Climática , Ecossistema , Meio Ambiente , Árvores
2.
Plant Sci ; 314: 111124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895551

RESUMO

Floral fragrance, which has the function of attracting pollinators, is a class of volatile secondary metabolites mainly released by the secretory tissue of petals. Terpenoids are key components of floral volatile substances. Previous studies have shown that there are significant differences in the concentration and composition of volatile floral fragrances, especially terpenoids, between Liriodendron chinense and L. tulipifera. At present, the mechanism by which the synthesis of floral fragrance is regulated in Liriodendron remains unexplored. In this study, we analyzed the differentially expressed genes (DEGs) of L. chinense and L. tulipifera, and identified 130 DEGs related to terpenoid synthesis. A KEGG enrichment analysis of DEGs related to terpenoid biosynthesis revealed that the monoterpenoid biosynthesis pathway was the most significant. We cloned the LtuDXR gene from L. tulipifera using RACE technology. RT-qPCR results showed that the expression of the LtuDXR gene was the highest in the early florescence petals, indicating that the LtuDXR gene may play a role in the synthesis of volatile terpenoids. Subcellular localization showed that the LtuDXR protein is mainly localized in the chloroplast. Overexpression of LtuDXR in Arabidopsis thaliana significantly increased the plant height, DXR enzyme activity, and carotenoid content. In this study, we identified and functionally characterized LtuDXR, which is involved in terpenoid synthesis in Liriodendron. Our work lays the foundation for further exploration of the molecular mechanism by which terpenoid biosynthesis is regulated in Liriodendron.


Assuntos
Vias Biossintéticas/genética , Flores/genética , Flores/metabolismo , Liriodendron/genética , Liriodendron/metabolismo , Odorantes , Terpenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
3.
BMC Genomics ; 22(1): 807, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749659

RESUMO

BACKGROUND: Liriodendron chinense is a distinctive ornamental tree species due to its unique leaves and tulip-like flowers. The discovery of genes involved in leaf development and morphogenesis is critical for uncovering the underlying genetic basis of these traits. Genes in the AP2/ERF family are recognized as plant-specific transcription factors that contribute to plant growth, hormone-induced development, ethylene response factors, and stress responses. RESULTS: In this study, we identified 104 putative AP2/ERF genes in the recently released L. chinense genome and transcriptome database. In addition, all 104 genes were grouped into four subfamilies, the AP2, ERF, RAV, and Soloist subfamilies. This classification was further supported by the results of gene structure and conserved motif analyses. Intriguingly, after application of a series test of cluster analysis, three AP2 genes, LcERF 94, LcERF 96, and LcERF 98, were identified as tissue-specific in buds based on the expression profiles of various tissues. These results were further validated via RT-qPCR assays and were highly consistent with the STC analysis. We further investigated the dynamic changes of immature leaves by dissecting fresh shoots into seven discontinuous periods, which were empirically identified as shoot apical meristem (SAM), leaf primordia and tender leaf developmental stages according to the anatomic structure. Subsequently, these three candidates were highly expressed in SAM and leaf primordia but rarely in tender leaves, indicating that they were mainly involved in early leaf development and morphogenesis. Moreover, these three genes displayed nuclear subcellular localizations through the transient transformation of tobacco epidermal cells. CONCLUSIONS: Overall, we identified 104 AP2/ERF family members at the genome-wide level and discerned three candidate genes that might participate in the development and morphogenesis of the leaf primordium in L. chinense.


Assuntos
Regulação da Expressão Gênica de Plantas , Liriodendron , Liriodendron/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol Biochem ; 166: 700-711, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34214780

RESUMO

Terpenoids are important secondary metabolites in plants and are involved in stress responses and pollinator attraction. Geranylgeranyl pyrophosphate synthase (GGPPS) is a key synthase in the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway of terpenoid synthesis, catalyzing the synthesis of diterpenoids. Liriodendron tulipifera is a nectar plant in North America. Little is known about the key genes involved in the biosynthetic pathways of terpenoids, the precursors of most compounds related to nectar, fragrance and coloring in flowers in L. tulipifera. In this study, the LtuGGPPS2 gene and its promoter (LtuGGPPS2-pro) were cloned from L. tulipifera. The results of sequence alignment showed that the LtuGGPPS2 gene is highly homologous to GGPPS genes of other plants. Subcellular localization analysis showed that the LtuGGPPS2 protein localizes to chloroplasts, suggesting that the LtuGGPPS2 gene is probably related to carotenoid and chlorophyll synthesis. Based on tissue expression profiles revealed by RT-qPCR, the expression level of the LtuGGPPS2 gene was highest in petals. These results were consistent with the changes in volatile and nonvolatile terpenoids in the flowers of L. tulipifera. GUS staining to examine the LtuGGPPS2 promoter indicated that it is responsive to hormones. Overexpression of the LtuGGPPS2 gene increased the carotenoid content and GGPPS enzyme activity in Arabidopsis thaliana, indicating that LtuGGPPS2 is the key terpenoid synthase in the flowers of L. tulipifera. Our findings lay a foundation for further functional analysis of the LtuGGPPS2 gene and deeper investigation of the terpenoid biosynthetic pathway in L. tulipifera.


Assuntos
Arabidopsis , Liriodendron , Arabidopsis/genética , Cloroplastos , Flores/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética
5.
Sci Rep ; 11(1): 6585, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753780

RESUMO

The organogenesis and development of reproductive organs, i.e., stamen and gynoecium, are important floral characteristics that are closely related to pollinators and reproductive fitness. As a genus from Magnoliaceae, Liriodendron has only two relict species: L. chinense and L. tulipifera. Despite the similar flower shapes of these species, their natural seed-setting rates differ significantly, implying interspecies difference in floral organogenesis and development. MADS-box genes, which participate in floral organogenesis and development, remain unexplored in Liriodendron. Here, to explore the interspecies difference in floral organogenesis and development and identify MADS-box genes in Liriodendron, we examined the stamen and gynoecium primordia of the two Liriodendron species by scanning electron microscopy combined with paraffin sectioning, and then collected two types of primordia for RNA-seq. A total of 12 libraries were constructed and 42,268 genes were identified, including 35,269 reference genes and 6,999 new genes. Monoterpenoid biosynthesis was enriched in L. tulipifera. Genome-wide analysis of 32 MADS-box genes was conducted, including phylogenetic trees, exon/intron structures, and conserved motif distributions. Twenty-six genes were anchored on 17 scaffolds, and six new genes had no location information. The expression profiles of MIKC-type genes via RT-qPCR acrossing six stamen and gynoecium developmental stages indicates that the PI-like, AG/STK-like, SEP-like, and SVP-like genes may contribute to the species-specific differentiation of the organogenesis and development of reproductive organs in Liriodendron. Our findings laid the groundwork for the future exploration of the mechanism underlying on the interspecific differences in reproductive organ development and fitness in Liriodendron.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Liriodendron/genética , Proteínas de Domínio MADS/genética , Desenvolvimento Vegetal/genética , Biologia Computacional/métodos , Flores/citologia , Flores/ultraestrutura , Ontologia Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica/métodos , Anotação de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...